ORIGINAL PAPER

Theoretical studies on the molecular structure and vibrational spectra of some dimethyl substituted pyridine derivatives

Güneş Süheyla Kürkçüoğlu • İlkan Kavlak • Taner Arslan • Cemil Öğretir

Received: 30 June 2008 / Accepted: 22 September 2008 / Published online: 25 October 2008 © Springer-Verlag 2008

Abstract The molecular geometries, normal mode frequencies, intensities and corresponding infrared assignments of monomeric and dimeric 2.3-dimethylpyridine, 2.4dimethylpyridine, 3,4-dimethylpyridine, 3,5-dimethylpyridine and monomeric 2,6-dimethylpyridine in the ground state were investigated at the density functional theory (DFT)-B3LYP level using the 6-311+G(d, p) basis set. The vibrational frequencies and geometric parameters of C-H stretching and bending in the fundamental region were calculated and compared to the Fourier transform infrared (FT-IR) data obtained. In the studied monomeric and dimeric dimethyl substituted pyridine derivatives, the C-H stretching and bending frequency shifts that occur between the dimer and the monomer may be diagnostic of the magnitude of dimerization energy. As supported by data in the literature, the most stable dimeric form was obtained for the 3,4-dimethylpyridine molecule.

Keywords 2,3-Dimethylpyridine · 2,4-Dimethylpyridine · 2,6-Dimethylpyridine · 3,4-Dimethylpyridine · 3,5-Dimethylpyridine · Monomer · Dimer · Infrared spectra · DFT

G. S. Kürkçüoğlu (⊠) · I. Kavlak
Department of Physics, Faculty of Arts and Science,
Eskisehir Osmangazi University,
26480 Eskişehir, Turkey
e-mail: gkurkcuo@ogu.edu.tr

T. Arslan · C. Öğretir Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey

Introduction

Recently, several molecular vibrational analyses of structurally related organic compounds have been reported. Numerous studies have been found in the literature dealing with the vibrational and crystallographic analyses of pyridine [1–6] and methyl derivatives [7–20]. The molecules 2,3-, 2,4-, 2,6-, 3,4-, 3,5-dimethylpyridine are defined by the presence of a six-membered heterocyclic ring consisting of five carbon atoms and one nitrogen atom. The arrangement of atoms is similar to that of benzene except that one of the carbon-hydrogen rings sets has been replaced by a nitrogen atom. The vibrational spectra of pyridine dimethyl derivatives have been investigated in several studies [8, 19]. Additionally, Draeger performed a normal coordinate analysis [12] using experimental data from the early 1960s [8]. Although this study resulted in good agreement between the experimental and calculated frequencies, new experimental data and developments in theoretical calculation methods justify a reinvestigation of the vibrational spectra of the structure of monomeric and dimeric pyridine dimethyl derivatives. To the best of our knowledge, no computational vibrational spectroscopic and dimerization studies on free 3,4-dimethylpyridine have yet been published. To understand the effect of dimerization behavior on the vibrational spectroscopy of dimethyl pyridines, we chose 2,3-, 2,4-, 3,4- and 3,5-dimethylpyridine, all of which can take part in the same type of dimerization. Therefore, the present study aims to give a complete description of the molecular geometries and vibrations of these dimethylpyridine derivatives. The results of both spectroscopic and theoretical studies are reported herein. The vibrational wavenumbers of the dimeric dimethylpyridine derivatives have also been calculated.

Density functional theory (DFT) is now accepted as a popular post-HF approach for the ab-initio computation of molecular structure, vibrational frequencies and energies of molecules. DFT calculations have provided excellent agreement with the experimental vibrational frequencies of organic compounds, when the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, basis set deficiencies and anharmonicity [21-27]. Moreover, the GIAO/DFT (gauge including atomic orbitals/ density functional theory) approach is being widely used in the calculation of chemical shifts for a variety of heterocyclic compounds [28-33]. The DFT method has also proved more successful in calculations of vibrational frequencies and chemical shifts than other methods [34-37]. However, no systematic work on the structure of alkyl substituted pyridines exists as yet, at least on a theoretical level. We believe that alkyl substituted pyridines deserve more detailed and systematic theoretical studies using updated computer programs and knowledge of structure-activity relationships [2-7, 9, 13, 14, 38, 40-46]. Here, we report the results of such studies on some dimethyl substituted derivatives.

Experimental and computational details

Fourier transform infrared (FT-IR) spectra were recorded using commercial 2,6-dimethylpyridine (Sigma 99%; St. Louis, MO) and 3,4-dimethylpyridine (Merck, 98%; Darmstadt, Germany). The measurements were carried out at room temperature on a Perkin Elmer 100 FT-IR spectrometer using 16 scans, a 0.05 mm CsI liquid cell and DTGS detector in the mid-IR range (4,000–235 cm⁻¹). The resolution was 2 cm⁻¹.

In this study, structural parameters, IR wavenumbers, IR intensities and dimerization energies were determined at the DFT-B3LYP level using the 6-311+G (d,p) basis set. Initial geometry was optimized by DFT-B3LYP with the 6-311+G (d,p) basis set in the ground state. Restricted molecular geometries of title compounds were performed by using the Gaussview molecular visualization program [47] and GAUSSIAN03 [48]. The molecular wave function was expanded on the basis of Gaussian functions that represent atomic orbitals. The position of the atomic center was systematically varied until the electronic energy was minimized. In general, electron correlation effects were fairly uniform though a conformational or torsional potential energy surface.

Results and discussion

The molecular structures and atomic numbering used in the present study are shown in Figs. 1 and 2. The first task for the computational work was to determine the optimized geometry of the studied molecules. Dimerization of 3,4-dimethylpyridine occurred between nitrogen atom and H1 or H5 atoms [49]. Thus, except 2,6-dimethylpyridine, all dimeric forms of the studied molecules were calculated as the 3,4-dimethylpyridine dimeric form. The calculated relevant geometric parameters for monomeric 2,3-dimethylpyridine

pyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, 3,4dimethylpyridine and 3,5-dimethylpyridine are summarized in Table 1. The same type dimeric 2,3-dimethylpyridine, 2,4dimethylpyridine, 3,4-dimethylpyridine and 3,5-dimethylpyridine geometric parameters are summarized in Table 2, using definitions from single crystal studies [49–53].

Optimization of the geometrical parameters, hence providing a structural analysis for the studied molecules, was carried out using DFT with the B3LYP/ 6-311+G (d,p) basis set. The theoretical C–N bond lengths for monomeric dimethyl pyridines were calculated as 1.337 Å, 1.335 Å, 1.340 Å, 1.334 Å, and 1.334 Å for 2,3-dimethylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, 3,4-dimethylpyridine and 3.5-dimethylpyridine, respectively. The theoretical C–N bond lengths for dimeric dimethyl pyridines were calculated as 1.340–1.340 Å, 1.338–1.338 Å, 1.339–1.339 Å, and 1.335– 1.337 Å for 2,3-dimethylpyridine, 2,4-dimethylpyridine, 3.4dimethylpyridine and 3,5-dimethylpyridine, respectively.

The C–CH₃ bond lengths in the studied monomeric and dimeric molecules were found to be slightly different. Monomeric forms: 1.507 Å (theoretical)–1.500 Å (experimental), 1.507 Å (theoretical)–1.500 Å (experimental) for 2,3-dimethylpyridine; 1.507 Å (theoretical)–1.496 Å (experimental), 1.507 Å (theoretical)–1.496 Å (experimental) for 2.4-dimethylpyridine; 1.507 Å (theoretical)–1.500 Å

(experimental), 1.507 Å (theoretical)–1.500 Å (experimental) for 2,6-dimethylpyridine; 1.506 Å (theoretical)–1.504 Å (experimental), 1.506 Å (theoretical)–1.504 Å (experimental) for 3.4-dimethylpyridine; 1.508 Å (theoretical)–1.504 Å (experimental), 1.508 Å (theoretical)–1.504 Å (experimental) for 3,5-dimethylpyridine.

Dimeric forms: 1.508 Å-1.508 Å (theoretical), 1.508 Å-1.508 Å (theoretical), 1.500 Å (experimental) for 2, 3-dimethylpyridine; 1.507 Å-1.507 Å (theoretical), 1.507 Å-1.507 Å (theoretical), 1.497 Å (experimental) for 2,4-dimethylpyridine; 1.507 Å–1.507 Å (theoretical), 1.504 Å (experimental), 1.507 Å-1507 Å (theoretical), 1.502–1.498 Å (experimental) for 3,4-dimethylpyridine; 1.508 Å-1.508 Å (theoretical), 1.505 Å (experimental), 1.508 Å–1.508 Å (theoretical), 1.505 Å (experimental) for 3,5-dimethylpyridine. It can be concluded that substituent effects also play an important role in the geometry of dimeric systems. Furthermore, it can be easily seen that, when comparing the observed with the experimental values, the closest hydrogen bond values between the two monomers in dimeric 3,4-dimethylpyridine came from the B3LYP/6-311+ G(d,p) calculation. The small discrepancies observed are due to the fact that the optimizations are performed in isolated conditions, whereas structures are affected by the crystal environment under experimental conditions.

Parameter	2,3-Dimethyl	pyridine	2,4-Dimethylp	yridine	2,6-Dimethylr	yridine	3,4-Dimethylp	oyridine	3,5-Dimethyl	oyridine
	Theoretical	Experimental [50]	Theoretical	Experimental [51]	Theoretical	Experimental [52]	Theoretical	Experimental [49]	Theoretical	Experimental [53]
Bond lengths (Å)										
N-C1	1.340	1.356	1.342	1.339	1.340	1.339	1.336	1.333	1.334	1.336
C1-C2	1.411	1.397	1.398	1.387	1.399	1.397	1.398	1.382	1.398	1.389
C2-C3	1.393	1.358	1.396	1.379	1.390	1.381	1.407	1.389	1.395	1.389
C3-C4	1.392	1.357	1.396	1.388	1.390	1.381	1.396	1.398	1.395	1.390
C4-C5	1.389	1.365	1.392	1.370	1.399	1.397	1.392	1.382	1.398	1.390
C5–N	1.337	1.356	1.335	1.336	1.340	1.339	1.334	1.339	1.334	1.336
C1-C6	1.507	1.496	1.507	1.496	1.507	1.500	ı			
C2-C6			ı	ı		ı	1.506	1.504	1.508	1.505
C2-C7	1.508	1.496	ı				ı			ı
C3-C7			1.507	1.496			1.506	1.504		
C4-C7			ı				ı		1.508	1.505
C5-C7			I	ı	1.507	1.500	I	ı	ı	
C6-H61	1.095	0.980	1.093	0.980	1.091	0.980	1.095	0.980	1.094	0.980
C6-H62	1.089	0.980	1.093	0.980	1.093	0.980	1.095	0.980	1.092	0.980
C6-H63	1.095	0.980	1.091	0.980	1.093	0.980	1.092	0.980	1.094	0.980
C7-H71	1.095	0.980	1.092	0.980	1.093	0.980	1.095	0.980	1.094	0.980
C7-H72	1.095	0.980	1.095	0.980	1.093	0.980	1.095	0.980	1.094	0.980
C7-H73	1.091	0.980	1.092	0.980	1.092	0.980	1.091	0.980	1.092	0.980
C1-H1			ı				1.088	0.950	1.088	0.980
C2-H2			1.085	0.950	1.084	0.900	ı	0.950		0.970
C3-H3	1.086	0.950	ı	ı	1.085	0.900	ı		1.087	1.000
C4-H4	1.084	0.950	1.084	0.950	1.084	0.900	1.085	0.950		0.970
C5–H5	1.086	0.950	1.0870	0.950			1.087	0.950	1.088	0.970
Bond angles (°)										
N-C1-C2	122.484	120.00	121.994	122.180	121.946	121.8	125.031	122.940	124.041	124.330
C1-C2-C3	120.083	120.00	120.362	ı	118.783	119.6	117.566	120.210	116.845	117.130
C4-C5-N	123.171	119.60	123.948	124.530	121.946	121.8	123.182	125.250	124.040	ı
C7-C2-C3	121.119	120.95	ı				ı			
C7-C2-C1	121.424	120.95	ı			ı	ı			ı
C2-C3-C7			121.473	120.940			ı			ı
C4-C3-C7			121.540	122.130		ı	ı			ı
C6-C2-C3			ı				122.06431	120.81	121.778	122.07
C7-C3-C2			ı	ı		ı	120.36892	121.95		
C2-C3-C6			ı			ı	ı		121.377	122.070
C7–C5–N			ı	ı	116.369	121.300	ı			
C4-C5-C7			ı		121.684	121.300	ı			
C6-C1-C2	121.144	120.950	121.581	121.520	121.682		120.36892	120.95	121.377	120.790

82

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.040 116.423 116.2 19.210 117.753 116.7	90 116.371 00 119.475	116.900 119.000	- 116.79976	- 116.38	- 117.675	- 116.680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ı		0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ı		ı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						ı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.496 -			ı		1	
-CI-C2-H2 - - -0.105 - 0.013 - +C4-C5-C7 - - - - -0.008 - -C4-C3-H3 - - - - -0.008 - -C4-C3-C6 - - - - -0.002 - -C1-C2-C6 - - - - - - -C2-C4-C7 - - - - -	-1.490 -			0.030		ı	
+C4-C5-C7 - - -0.008 - 5-C4-C3-H3 - - - -0.002 - 1-C1-C2-C6 - - - - - - 5-C2-C4-C7 - - - - - - - - 1-C2-C4-C7 - <t< td=""><td>-0.105 -</td><td>0.013</td><td></td><td>ı</td><td></td><td>ı</td><td></td></t<>	-0.105 -	0.013		ı		ı	
-C4-C3-H30.002		-0.008		ı		ı	
		-0.002		ı		ı	
-C2-C4-C7				0.000		0.000	
				-0.003		ı	
		ı	ı	I		0.000	I

Comparisons of methyl group vibrational wavenumbers for monomeric and dimeric dimethyl pyridine molecules are tabulated in Tables 3 and 4, respectively. All the CH₃ vibrational modes are found to be in good agreement with experimental values. The biggest differences found between theoretical and experimental CH₃ stretching mode were $1-9 \text{ cm}^{-1}$ for 2.4-, 2.6-, 3.4-dimethylpyridine due to elongation of the C-C bond and deformation of the dihedral angles (C₆—C₁—C₂—H₂). The largest difference between theoretical and experimental ring stretching vibrations is 5 cm⁻¹ for 2,3-dimethylpyridine, 12 cm⁻¹ for 2,6-dimethylpyridine, 3 cm^{-1} for 3,4-dimethypyridine and 4 cm^{-1} for 3,5-dimethylpyridine because of the decreasing bond lengths values of C₂-C₃ and C₃-C₄, i.e., 0.036 Å for 2,3-dimethylpyridine, 0.09 Å for 2,6dimethylpyridine, 0.018 for 3,4-dimethylpyridine, and 0.006 Å for 3,5-dimethylpyridine. Similar differences were also observed between other theoretical and experimental values. Experimental fundamentals are in better agreement with scaled fundamentals, and good correlations using the B3LYP/6-311+G (d,p) method were found for all studied molecules.

The FT-IR spectra of 2,3-, 2,4- and 3,5-dimethylpyridine were obtained from the literature [12, 19]. Liquid phase FT-IR spectra of 2,6- and 3,4-dimethylpyridine recorded in this study were used as experimental results. Theoretical FT-IR spectra of the monomeric and dimeric dimethyl pyridine molecules are shown in Figs. 3 and 4, respectively. The harmonic-vibrational frequencies calculated with the 6-31 1+G (d,p) basis set at the B3LYP level of the studied molecules are listed in Tables 3 and 4, together with the experimental frequencies. For the single pyridine ring hydrogen atom of an isolated molecule, three different vibrations are expected, e.g., C-H stretching, in-plane bending, and out-of plane deformation. In the $3,000 \text{ cm}^{-1}$ region, it can be observed that C-H bond stretching of the ring appears at higher frequencies, whilst the CH stretching of the methyl group appears at lower frequencies in the region of 2,900 cm⁻¹. Upon increasing the degree of substitution, a greater number of bands corresponding to the C-H stretching of the methyl groups are expected, having very similar frequencies since they are found within the same range. Aromatic ring peaks are found to shift approximately 20 cm⁻¹ between experimental and theoretical values [17]. Comparison of the theoretical and experimental spectra indicates that the intense vibrations in the experimental spectra are also intense in theoretical spectra. Comparison of the frequencies between experimental and literature values reveals the overestimation of the calculated vibration modes due to neglect of anharmonicity in real systems. The major factor responsible for the small discrepancies between experimental and computed values is related to the fact that the experimental value is an

	d D	
	Ĕ	
	ž.	
	-	
	ă	
	Z.	
	H	
	20	
	ē	
5	믑	
•	Ξ	
	e	
	Ξ	
	10	
	5	
	d,	
	7	
	q	
	ē	
	Ξ	
;	Ð	
	7	
	~	
•	11	
	ຍົ	
	Ξ.	
	ō	
	Y.	
	d,	
	7	
	Ξ.	
	ē	
	Ξ	
;	3	
	Ţ	
	4	
•	n	
	ۍ	
	Ξ	
	5	
•	Ę	
	8	
	Ξ	
	£	
- 1	E.	
	Ă.	
:	Ξ	
	9	
	-	
	×.	
	Ľ.	
	7 0	
0	ne, 2,4	
	dine, 2,4	
	ridine, 2,4	
	yridine, 2,4	
	Ipyridine, 2,4	
:	iylpyridine, 2,4	
	thylpyridine, 2,4	
	nethylpyridine, 2,4	
	imethylpyridine, 2,4	
	-dimethylpyridine, 2,4	
	3-dimethylpyridine, 2,4	
	2,3-dimethylpyridine, 2,4	
	c 2,3-dimethylpyridine, 2,4	
	ric 2,3-dimethylpyridine, 2,4	
	neric 2,3-dimethylpyridine, 2,4	
	imeric $2,3$ -dimethylpyridine, $2,4$	
	dimeric 2,3-dimethylpyridine, 2,4	
	of dimeric $2,3$ -dimethylpyridine, $2,4$	
	of dimeric $2,3$ -dimethylpyridine, $2,4$	
	es of dimeric $2,3$ -dimethylpyridine, $2,4$	
	ries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	etries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	metries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	sometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	I geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	tal geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	shear geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	nental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	'imental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	ermental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	permental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	1 experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	nd experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	and experimental geometries of dimeric 2,3-dimethylpyridine, 2,	
	d and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	zed and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	nized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	imized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	otimized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	Optimized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	Optimized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	2 Optimized and experimental geometries of dimetric 2.5 -dimethylpyridine, 2.4	
	e 2 Optimized and experimental geometries of dimeric 2,3-dimethylpyridine, 2^{4}	
	JIE 2 Optimized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	
	able 2 Optimized and experimental geometries of dimeric $2,3$ -dimethylpyridine, $2,4$	

Parameter		2,3-Dimetl	hylpyridine	Experimental [50]	2,4-Dimeth	ylpyridine	Experimental [51]	3,4-Dimeth	ylpyridine	Experimental [49]	3,5-Dimethyl	lpyridine	Experimental [5	32]
Bond lenoth (Å)		MI	CM		MI	cΜ		MI	CM		MI	CM		L
N_C1	N'-CIN	1 330	1 330	1 356	1 347	1 347	1 330	1 334	1 335	(1 330-1 333)	1 33707	1 335	1 336	
CI-C2	(U, -U)	1411	1411	1 396	208 1	1 398	1 387	1 392	1 392	(6661 6661)	1 30947	308	1 389	
C2-C3	(C2'-C3')	1 394	1 394	1.357	1.397	1.397	1.379	1.396	1.396	(1.382–1.388)	1 39525	1.396	1 3 8 9	
C3-C4	(C3'-C4')	1.392	1.391	1.356	1.398	1.396	1.388	1.406	1.406	(1.397–1.398)	1.39589	1.395	1.390	
C4-C5	(C4'-C5')	1.390	1.390	1.365	1.392	1.393	1.371	1.398	1.398	(1.375 - 1.382)	1.39790	1.399	1.390	
C5–N	(C5'–N')	1.340	1.339	1.356	1.338	1.338	1.336	1.339	1.339	(1.333 - 1.339)	1.33497	1.337	1.336	
C1-H1	(C1'-H1')	,	ı			ı		1.087	1.087	0.950	1.08752	1.087		
C2-H2	(C2'-H2')				1.085	1.085	0.950	1.085	1.085	0.950				
C3-H3	(C3'-H3')	1.086	1.086	0.950		ı		ı	,		1.08755	1.086	0.970	
C4-H4	(C4'-H4')	1.084	1.084	0.950	1.085	1.085	0.950	ı					ı	
C5–H5	(C5'–H5')	1.087	1.086	0.950	1.087	1.087	0.950	ı			1.08784	1.088	0.970	
C1-C6	(C1'-C6')	1.508	1.508	1.492	1.507	1.507	1.496							
C2-C6	(C2'-C6')										1.50812	1.508	1.505	
C3-C6	(C3'-C6')							1.507	1.507	1.504				
C2-C7	(C2'-C7')	1.508	1.508	1.470										
C3-C7	(C3'-C7')			1.507	1.507	1.50738	1.496							
C4-C7	(C4'-C7')							1.507	1.507	(1.502 - 1.498)	1.50799	1.508	1.505	
C5-C7	(C5'-C7')													
Bond angles (°)														
N-C1-C2	(N'-C1'-C2')	122.512	122.512	120	122.020	122.021	122.180	123.194	123.194	(120.100 - 120.420)	123.60103	123.601	124.330	
C1-C2-C3	(C1'-C2'-C3')	117.403	117.408	120	120.290	120.290		119.825	119.825	(119.800 - 119.900)	117.10998	117.110	117.130	
C3-C4-C5	(C3'-C4'-C5')	118.248	118.239		119.244	119.244		117.550	117.836	(117.430–117.790)	117.10998	116.802		
C4-C5-N	(C4'-C5'-N')	122.718	122.734	119.600	123.486	123.487	124.530	124.573	124.573	(122.940 - 123.130)	123.60103	124.040		
C7-C2-C1	(C7'-C2'-C1')	121.415	121.415	120.950										
C6-C1-N	(C6'-C1'-N')	116.449	116.447	119.040	116.478	116.480	116.290							
C7-C4-C3	(C7'-C4'-C3')		,		121.398	121.402		122.034	122.040		121.81624	121.816	122.070	
C6-C1-C2	(C6'-C1'-C2')	121.038	121.038	120.950	121.500	121.499	121.520	ı			121.09723	121.097	ı	
C6-C3-C4	(C6'-C3'-C4')							121.467	121.467	(120.810 - 121.080)				
H5-C5-N	(H5'-C5'-N')	116.021	116.041		115.957	115.958					116.17465	116.174		
H2-C2-C1	(H2'-C2'-C1')							119.830	119.830					
H1-C1-N	(H1'-C1'-N')						ı	116.468	116.468	(118.300 - 118.400)	116.12163	116.122	ı	
HI-CI-CZ	(H1'-C1'-C2')	-		-				120.338	120.338		120.27734	120.276	-	
CS-N-CI	(C5'-N'-C1')	119.042	119.033	119.210	117.966	117.966	116.700	117.022	117.022	(115.920-116.380)	61688.711	117.889	116.680	
Dihedral angles (690.0	0000								,		1	
C7-C3-C1-C0	$(C^{7}-C^{2}-C^{1}-C^{0})$	-0.034	-0.023											
C7-C4-C3-C6	(C7' - C4' - C3' - C6')						,	0.000	0.000		1			
C6-C1-C2-H2	(C6'- C1'-C2'-H2')				-0.135	0.134								
C6-C3-C2-H2	(C5'-C3'-C2'-H2')				1.520	-1.516		0.000	0.000			,		
C7-C4 -C5-H5	(C7'-C4'-C5'-H5')				-1.505	1.501		0.003	0.006		0.02278	0.012		
H2-C2-C3-C7	(H2'-C2'-C3'-C7')							0.000	0.000					
N-C1-C2-C3	(N'-C1'-C2'-C3')	0.013	-0.0170		-0.112	0.112		0.000	0.000		0.00747	0.006	ı	
Bond length (Å)		Hydrogen	bonding geon	letry										
H5′—N		2.606	,			2.597		2.592			2.598			
N'H5		2.613	ı			2.596	ı	2.593			2.598		ı	
Bond angles (°)														
C5-H5N'		150.821	ı			151.178		151.970	ı	151.680	ı			
N'		116.041	ı			115.958		115.816		116.123	ı		I	
C5'-H5'N'		151.120				151.165		152.002		151.685				
N CS-H5		116.021				866.611	ı	018.011		116.122				
														I

Assignments ^a	2,3-Dimethy	'lpyridine		2,4-Dimethy	lpyridine		2,6-Dimethy	lpyridine		3,4-Dimethy	/lpyridine		3,5-Dimethy	/lpyridine	
	Theoretical (cm ⁻¹)	Experimental (cm ⁻¹) [19]	IR act (km mol ⁻¹)	Theoretical (cm ⁻¹)	Experimental (cm ⁻¹) [19]	Intensity (km mol ⁻¹)	Theoretical (cm ⁻¹)	Experimental (cm ⁻¹)	Intensity (km mol ⁻¹)	Theoretical (cm ⁻¹)	Experimental (cm ⁻¹)	Intensity (km mol ⁻¹)	Theoretical (cm ⁻¹)	Experimental (cm ⁻¹) [12]	Intensity (km mol ⁻¹)
v _s CH	3,074	3,070 m	18.9298	3,059	3,058 w	17.6471	3,074		12.8575	3,057	3,057 vs	22.3614	3,029	3,029vs	7.9752
v_{s} CH	3,045	3,045 s	17.816	3,050	3,040 sh	15.7456	3,066	3,063 s	20.3893	3,033	3,028 vs	11.6078	3,025		12.1309
$v_{\rm as}^{-1}$ CH	3,034		15.2831	3,028		19.941	3,050	` I	3.6156	3,020	3,023 vs	34.6938	3,021		50.6114
$v_{\rm as}$ CH	3,021		8.1761	2,999		16.8519	2,999		14.7305	2,996	2,997 m	15.022	2,991	2,985vs	15.3005
$\gamma_{\rm as} CH$	2,989		20.1321	2,995		14.4913	2,998		19.9625	2,990	2,983 m	17.5923	2,991		12.8878
$v_{ m as} CH_3$	2,957		3.6842	2,978		11.5641	2,979		22.9459	2,959	2,956 sh	7.9688	2,964	2,971sh,vs	30.9911
$\gamma_{\rm s} { m CH}_3$	2,954	,	30.0574	2,970	ı	15.6762	2,978	2,957 sh	0.0137	2,954	2,946 vs	22.9827	2,964	ı	0.0117
$\gamma_{\rm s} { m CH}_3$	2,912	2,913 vs	42.6787	2,924	2,933 vs	18.484	2,924		7.8399	2,915	2,923 vs	20.596	2,917	2,930 vs	16.6207
$v_{\rm s} { m CH}_3$	2,912	ı	5.6881	2,917	2,916 vs	19.6868	2,924	2,923 vs	30.2999	2,911		26.3712	2,916	ı	40.1291
$v_{ m Ring} m C= m C$	1,572	1,577 vs	18.2695	1,580		98.9975	1,568	1,580 m	48.0193	1,574	1,577 w	34.6864	1,577	1,581vs	2.4425
$v_{\rm Ring} C=C$	1,550		19.3106	1,544		33.7244	1,559	1,553 s	74.6543	1,542		12.1145	1,553	1,463 vs	7.502
$\delta_{\rm sc} { m CH}_3$	1,450	1,453 vs	17.4613	1,460	1,456 m	9.4901	1,446	1,453 w	60.5196	1,466	1,479 w	9.5301	1,453		13.1351
$\delta_{\rm sc} { m CH}_3$	1,441		19.7281	1,441		42.1517	1,445		17.438	1,441	1,447 vs	3.3466	1,447		23.9246
$\delta_{sc}CH_3$	1,438	1,432 vs	10.6796	1,436		11.5914	1,424		0.0006	1,441		19.303	1,435		0
$\delta_{sc}CH_3$	1,427		0.0401	1,432		4.0518	1,424		15.3653	1,436		26.1781	1,434	1,426vs	15.5619
δ _w CH ₃	1,415		28.195	1,424	1,424 vs	7.2723	1,420	1,420 w	22.4758	1,427		0.0297	1,408		18.71
δ _w CH ₃	1,406		24.3383	1373	1,382 w	14.0024	1,391	1,397 s	2.1858	1,385	1,385 vs	7.7885	1,404		0.0052
δ _w CH ₃	1,370	1,369 s	2.3423	1,362	ı	3.3862	1,359	1,373 s	9.4702	1,373	1	5.1863	1,367	1,379 s	1.526
δ _w CH ₃	1,357	,	2.2266	1,360	1	2.2618	1,358	1	4.7315	1,364	1,363 sh	1.3182	1,365	1,358sh,m	2.3002
Ring bending	1,255	,	0.9872	1,276	1,273 m	7.4893	1,241	1,245 m	7.0093	1,284		2.1837	1,303	ı	4.7597
YC=N	1,239	ı	0.1147	1,245	1	1.0225	1,240		1.5167	1,237	1,246 sh, m	0.0693	1,245		0.7749
Ring breathing	1,215		4.0689	1,234	1,228 w	0.0182	1,204		13.6678	1,213	1,222 m	1.1657	1,233	1,232 s	5.0793
King deformation	1,154	1,165 sh, w	3.9326	1,144	1,162 m	2.6944	1,137		4.1483	1,1//	1,191 vs	6615.11 6 2000 0	1,150	007	20.436
CH (in plane)	1,104		7.2061	1,093	1	0.2385	1,077	1,095 s	5.4953	1,148	1,126 m	0.3898	1,144	1,138 s	1.3656
King breathing	1,000	1	2.4155	1,023	1,03/ S	2.0015 0	1,024	1,030 s	1000.0	1,020	1,043 m 1.020 2	27777.1	1,020	1,0 <i>5</i> 2 s	909.c
otwCH3+ YC=C	1,034		1 0 2 0 2	1,022		8./199	1,017	1	0.0011	1,050	1,050 S	0.011/	1,022		0
$\delta_{tw}CH_3 + \gamma_{C=C}$	1,008		4.9593	994 070	992 s	2.6524	1,013		0.0502	1,009	-	5.1121	1,010	1,011 m	0.0004
6wCH3	9/4	8716	1760.0	090	W 0/6	2/CI.I	706 1068	- 071	2607.1	904 066	700 111	2 8541	997 062		0.2726
veni3 veh	951		0.0004	950		0.0756	200 053		0.8537	951		0.0054	202 273	- 0.70 _W	07/0.0
Ring deformation	920		0.0059	808	ı	7.0439	885		1.8059	206		0.3304	911		0.0771
γCH	832	842 w	0.1438	865		0.8984	867		0	816		6.6441	911		0.1406
γCH	771		30.2449	802	,	26.7107	754	773 vs	41.4509	808	,	22.1136	840		13.9565
Ring bending	720	724 vs	11.7041	738		1.1586	721	717 m	2.2982	737		0.9746	700	715vs	18.8989
Ring breathing	712		1.943	720		0.0649	702		0.5629	711	712 vs	6.0052	700	710vs	5.1694
Ring breathing	576	589 s	1.8835	541	553 s	0.7707	546	556 s	0	586	ı	1.3399	529	532 m	0.7554
Ring twisting	508	,	0.901	532		2.8533	542	539 s	1.3875	514	525 s	6.0137	519	,	0.6154
Ring bending	502	ı	0.7963	504	ı	2.7833	525	ı	1.7164	493	487 sh	2.8353	487	498w	0
Ring bending	434		0.028	432		11.3991	425	419 m	0.0108	415	419 s	4.7466	432	438w	0.0025
δ _w CH ₃ +ring twisting	407	412 m	2.2896	396	1	2.0619	406	,	2.3781	392	401 w	0.3197	383	1	0.7542
$\delta_{w}CH_{3}$	287		0.2938	270	278 m	0.9694	272		1.8014	280	ı	0.1814	260	272 m	0.6198
δ _{rock} CH ₃	256	262 s	6.0568	207	ı	1.3066	199		9.349	246		0.5723	218	ı	0
brockCH ₃	154		1.4534	183		1.5232	189		0	169		0.7535	185		1.7708
DrockCH3	149		0.2394	61 22		0.4664	00 i		0.81	154		0.5216	42		0.0564
$\delta_{ m nock} CH_3$	107		0.0322	33		0.2088	47		0	120		0.003	34		0

🖄 Springer

ie, 3,4-dimethylpyridine, and 3,5- dimethylpyridine in		
⁻¹) of dimeric 2,3-dimethylpyridine, 2,4-dimethylpyridi		
ble 4 Comparison of experimental and theoretical vibrational wavenumbers (cm ⁻	e ground state	

Assignments ^a	2,3-Dimethyp	syridine		2,4-Dimethylp	yridine		3,4-Dimethylp	yridine		3,5-Dimethyp	yridine	
	Theoretical (cm ⁻¹)	Intensity $(kmmol^{-1})$	Experimental (cm ⁻¹) [19]	Theoretical (cm ⁻¹)	Intensity (kmmol ⁻¹)	Experimental (cm ⁻¹) [19]	Theoretical (cm^{-1})	Intensity (kmmol ⁻¹)	Experimental (cm ⁻¹)	Theoretical (cm^{-1})	Intensity (kmmol ⁻¹)	Experimental (cm ⁻¹) [12]
ν _s CH	3,071-3,071	1.1974–30.3739	3,070 m	3,058-3,057	24.2595-0.0109	3,058 w	3,056- 3,055	59.4252-0.0192	3,057 vs	3,034-3,032	28.8982-0.0004	3,029vs
v_{s}^{cH}	3,043-3,042	0.0265 - 16.1560	3,045 s	3,046-3,046	0.9064-39.1551	3,040 sh	3,030- 3,029	25.3126 - 0.0001	3,028 vs	3,029-3,029	28.476-0.0299	. 1
$\nu_{\rm as} { m CH}$	3,036-3,035	31.9717-0.6337		3,032-3,030	13.8751 - 0.0004		3,025- 3,024	25.4675 - 0.0047	3,023 vs	3,023-3,023	0.0419-67.6688	
$\gamma_{\rm as} { m CH}$	3,018-3,018	7.8485-11.5188		2,997-2,997	38.4428-0.0361		2,996- 2,996	0.1028 - 4.9559	2,997 m	2,998-2,997	0.185-29.3025	2,985vs
$v_{\rm as}$ CH	2,987-2,987	20.8111 - 20.9740		2,994-2,994	23.9916-5.1311		2,995- 2,995	8.9955-56.9922	2,983 m	2,992-2,992	1.3053-27.0765	
$v_{\rm as} { m CH}_3$	2,955-2,955	3.3186 - 3.0912		2,975-2,975	0.3465 - 24.6243		2,958- 2,958	8.3297-11.0092	2,956 sh	2,965-2,965	0.7178-42.1864	2,971 sh.vs
$v_{\rm s} { m CH}_3$	2,952-2,952	1.0345 - 61.5151		2,969-2,969	22.5143-10.7794		2,951-2,951	0.0146 - 44.891	2,946 vs	2,965-2,965	0.0035-22.2414	
$\gamma_{ m s}{ m CH}_3$	2,911-2,910	1.9325 - 30.2764	2,913 vs	2,922-2,922	22.5143-10.7794	2,933 vs	2,914- 2,914	48.1794 - 0.2052	2,923 vs	2,919-2,918	46.3415 - 0.001	2,930 vs
$v_{\rm s} {\rm CH}_3$	2,910-2,910	59.5743-20.9416	ı	2,915-2,915	38.7992- 0.6266	2,916 vs	2,909- 2,909	55.3642 - 0.0097		2,918-2,918	39.7764 40.3737	
$v_{Ring}C=C$	1,572-1,570	29.7276-0.0266	1,577 vs	1,580-1,580	44.1404-1.2539		1,576- 1,575	64.2623 - 0.0013	1,577 w	1,580-1,578	6.1983 - 0	1,581 vs
$v_{Ring}C=C$	1,552-1,552	11.9969–31.5185	,	1,544-1,541	188.3065-0.0004	ı	1,543-1,541	37.5334 - 0		1,558-1,558	0.0027-12.5612	$1,463 \mathrm{vs}$
$\delta_{ m sc} CH_3$	1,453-1,452	0.0274-44.3523	1,453 vs	1,467-1,467	0.0021 - 84.4114	1,456 m	1,474- 1,473	30.7336 - 0.0008	1,479 w	1,459-1,459	33.0728-0.0002	
$\delta_{\rm sc} { m CH}_3$	1,438-1,438	11.7915-20.4401		1,441-1,441	0.0029 - 29.5009		1,441- 1,441	10.0129 - 0.0538	1,447 vs	1,448-1,448	4.1579-43.5588	
$\delta_{\rm sc} {\rm CH}_3$	1,438-1,438	12.5223-14.9685	1,432 vs	1,436-1,436	88.9628-0.0314		1,440-1,440	0.0597-34.5017		1,438-1,438	0.0006-12.1797	
$\delta_{\rm sc} { m CH}_3$	1,425-1,424	0.0631 - 0.0449		1,432-1,432	0.0008 - 22.5984		1,435-1,435	47.8158-0.0007		1,435-1,435	0.0026 - 16.7079	1,426vs
$\delta_{\rm w} { m CH}_3$	1,416-1,414	29.1664 - 0.1481		1,423-1,423	9.3816 - 0.0003	1,424 vs	1,427-1,427	2.0518 - 0.0066		1,415-1,414	22.8509-0.0002	
$\delta_{w}CH_{3}$	1,410-1,410	69.7001-0.3277		1,374-1,374	0.0012-15.1453	1,382 w	1,389-1,388	10.7128 - 0.0004	1,385 vs	1,406-1,406	9.486 - 0.0002	
$\delta_{w}CH_{3}$	1,367-1,366	2.0577-2.2429	1,369 s	1,360-1,360	23.0425 - 0.0079		1,370- 1,370	0.8403 - 10.2233		1,369-1,368	3.1408 - 0	1,379 s
$\delta_{w}CH_{3}$	1,353-1,353	0.2859–6.2708		1,357-1,357	3.6899-0.8444		1,361-1,361	2.5042 - 0.0059	1,363 sh	1,366-1,366	4.4118-0.0577	1,358sh.m
Ring bending	1,268-1,264	0.0046 - 10.4545		1,292-1,286	0.0010-5.2723	1,273 m	1,302- 1,294	23.6093 - 0.0001		1,318-1,313	24.1264 - 0	
$\gamma_{\rm C=N}$	1,235-1,234	0.0405 - 0.0004		1,243-1,242	0.0001 - 27.3241		1,236- 1,235	0.3202 - 0	1,246 sh. m	1,252-1,251	0.3104 - 0	
Ring breathing	1,215-1,214	14.4063 - 0.0004		1,231-1,231	0.0003-2.5596	1,228 w	1,217- 1,216	7.6866 - 0	1,222 m	1,232-1,232	12.0142-0.0003	1,232 s
Ring deformation	1,154-1,154	0.2535-14.8231	1,165 sh. w	1,146-1,143	0.0191 - 0.0001	1,162 m	1,176-1,175	0-23.8025	1,191 vs	1,555-1,153	62.9413 - 0	
CH (in plane)	1,103-1,103	15.1300-2.1049		1,096-1,093	0.0002-11.4889	1	1,149-1,147	0-0.3863	1,126 m	1,145-1,145	0-3.3947	1,138 s
Ring breathing	1,053-1,049	11.8341-0.0017		1,023-1,022	4.6148 - 0.0000	1,037 s	1,053- 1,053	23.811 - 0.0007	1,043 m	1,029-1,029	0.0015-9.8128	1,032 s
$\delta_{\rm tw} CH_3 + \gamma_{\rm C=C}$	1,031-1,030	0.0292 - 0.0182		1,020-1,020	0.0000-6.5591		1,032- 1,032	0.0002 - 0.0862	1,030 s	1,024-1,024	0.1153-1.2468	
$\delta_{\rm tw} CH_3 + \gamma_{\rm C=C}$	1,006-1,005	0.0880 - 8.8616		992-992	15.6047 - 0.0017	992 s	1,010-1,010	0.0014-9.8087		1,011-1,010	30.4501	1,011 m
bwCH ₃	972-971	16.9731-5.6146	972 s	978-978	3.0879–1.4174	978 w	986- 985	16.7595 - 0.0001	986 m	866-866	0-0	
δ _w CH ₃	970-969	0.2288 - 0.1989		977-977	3.6723-0.0201		966-965	0.0111 - 7.262		965-965	0.9546-0.0467	
γCH Έ· 1. ·	166-266	3.8402-14.4123 0.0175 0.0001		959-958 200 200	0.0006-1.9408		954-953 202 202	0.0008-0.007		949-948	0.2023-0.0001	M676
King deformation	930-930	0.01/20/0024		898-898	1.4505-0.0001		176 -176	0./144- 0.002/		914-914 012 011	0-1000.0	
γCH	830-830	5.1159-0.0525	842 W	908-908	0.02050-20.4998		819- 818 800 805	0.0003-156.04		913-911	0-0.001/	
усн В t J	0//-///	0420-024040 01400-12-0240		800-018	0.004 /		208 -008	42.8334-0.001/		820-849	8/65.6-0000.0 3713 FC 03F3 15	115
	11/-07/	0.1490-1/.8/45	124 VS	001-001	0000.0-1626.16		CC1 -/C1	U -824C.UI	, 1	cu/-cu/	C/ IC/ 7 - 6C/0.1C	SACI/
King breathing	713-713	8168-9-66/6.0		720-719	0.0057-13.1306		/14- /12	0.0006-9.7116	/12 vs	/03-/01	0.0005-15.4402	/10vs
nting preatming	703 L03	0.000 0 0003 0	S 600	240-520 520 520	0.0452-0.0000 2 0064 0 0000	S CCC	200 - 200 113 - 313	1000.0 -CC/2./	- 313	675-676		Ш 766
Ding banding	106-106	2000.0-0020.0		202 202 202 202	5.0004-0.0000 7120 0 123 3		416 -CIC	0.0002- 11.4000	40 L 01	076-176 707 007	1000.1-0060.2 0-1001.0	100
	664-200	0700.0-1000.0		CUC-CUC	1160.0-1266.6		490-494	0.1604- U	40 / SII 410 -	400-400	0.1041-0	470 W
King bending s. ⊂⊔ ±Ding truigting	403-451	0.00/4-0.0042 10 8770-01701		438-431 206 305	0.0098-0.8839		420- 41/ 305 304	0.00000 1	419 S 401	402 002 202 002	0-6/10.0	400W
owCrt3+rung twisting	cut-/ 04	16/10-0//0.01	412 III	CKC-0KC	0.0000 0.0000		590-594	1.0099-0	401 M	200-202	0-0	
هرCH ₃ د میر	255-252	0.4269 - 0.3504		268-267	9.3009-0.0000	278 m	280- 280	0.3622 - 0.0008		261-261	0-3.6272	272 m
δ _{rock} CH ₃	110-123	0.0202-10.3014	262 s	208-207	0.0001-2.1124		243-242	0-1.2809		223-221	0.0005-1.3873	
o mock CH3	142-141 00 00	2.43/0-0.0141	,	791-791	2.0943-0.001 2.120 0.021		1/1- 108	1.1323-0	1	180-180	0-5.2/01	,
brockCH ₃	98-93	0.1391 - 0.4674		66-66	2.5470-0.0370		151-151	0.018 - 0.9792		48-47	0.0001 - 3.2701	
$\delta_{ m nock} CH_3$	55-39	0.0036 - 0.0121		50-45	0.0452 - 0.9581		114- 114	0.0601 - 0.0004		46-44	0.0825 - 0	ı

 a v_{s} = symmetric stretching. v_{as} =asymmetric stretching. δ_{w} =wagging. δ_{sc} = scissoring. δ_{r} =rocking. γ = out of plane

Fig. 3 Theoretical infrared spectra of monomeric forms of the studied molecules

Fig. 4 Theoretical infrared spectra of dimeric forms of the studied molecules

anharmonical frequency while the calculated value is a harmonic frequency.

The calculated energies, energy differences and Mulliken charges are given in Table 5. It is clear that the dimerization energies of the studied molecules changed between -1.336 and -1.801 kcal/mol. The 3,4-dimethylpyridine ring has the

biggest dimerization energy (-1.801 kcal/mol) and Mulliken charge on nitrogen atom (-0.056); 2,3-dimethylpyridine ring has smallest dimerization energy (-1.336 kcal/ mol) and Mulliken charge on nitrogen atom (-0.001). The nitrogen atom charges of monomeric forms have the following sequence:

 $3,4-dimethylpyridine > 3,5-dimethylpyridine > 2,3-dimethylpyridine > 2,4-dimethylpyridine (<math>\leftarrow$ increasing negative charge).

The hydrogen bonds in dimers between N and H atoms (Table 2) have the opposite sequence:

 $\label{eq:constraint} \begin{array}{l} 3,4-\text{dimethylpyridine} < 3,5-\text{dimethylpyridine} < 2,3-\text{dimethylpyridine} < 2,4-\text{dimethylpyridine} \\ 2.591 < 2.599 < 2.598 < 2.613(2.602) \end{array}$

Table 5 The calculated total energies, zero point energies (ZPE) and energy differences, ΔE values and Mullikencharges of the studied monomeric and dimeric dimethyl substituted pyridines. $E_T = E + ZPE$, $\Delta E = E_{T(dimeric)} - 2 \times E_{T(monomeric)}$

	2.3-Dimethylpyridine	2.4-Dimethylpyridine	3.4-Dimethylpyridine	3.5-Dimethylpyridine
	Monomer			
E (hartree)	-327.010	-327.012	-327.008	-327.008
ZPE (hartree)	0.140	0.140	0.141	0.140
E _{T(hartree)}	-326.870	-326.872	-326.868	-326.868
$2 \times E_{T(hartree)}$	-653.738	-653.743	-653.735	-653.735
	Dimer			
E _(hartree)	-654.022	-654.026	-654.020	-654.019
ZPE _(hartree)	0.281	0.281	0.282	0.281
E _{T(hartree)}	-653.741	-653.745	-653.738	-653.738
$\Delta E_{(hartree)}$	-0.002	-0.002	-0.003	-0.003
$\Delta E_{(kcal/mol})$	-1.334	-1.387	-1.801	-1.581
Charges	Monomer			
N	-0.001	-0.033	-0.070	-0.051
Н	0.128	0.127	0.117 (0.130)	0.120
С	-0.034	0.016	-0.624 (-0.204)	0.681
	Dimer			
N ^a	-0.032	-0.002	-0.056	-0.032
H ^a	0.205	0.205	0.196	0.199
C ^a	0.075	-0.311	-0.370	-0.930

^a Same charge value with other pyridine ring in dimeric forms

It seems that the smallest hydrogen bonds in dimeric forms have the biggest nitrogen charges in monomeric forms. It is clear that while the hydrogen bond lengths between two monomers decrease, the stability of the dimers increase.

Conclusion

In the present work, the theoretical vibrational frequencies of monomeric 2,3-, 2,4-, 2,6-, 3,4- and 3,5-dimethylpyridine were calculated. The theoretical vibrational frequencies and dimerization energies of dimeric 2,3-, 2,4-, 3,4- and 3,5dimethylpyridine were also investigated. Their approximate mode descriptions with DFT calculations were then determined. The results of quantum chemical calculations with monomeric and dimeric dimethylpyridine molecules have shown that the substituent position plays an important role in the FT-IR spectra and dimerization of the molecules. The effects of steric hindrance and electronic charge distribution play the most important role in determining the structure and the substitution of these molecules. Theoretical FT-IR spectra of the monomeric and dimeric dimethylpyridine molecules are in agreement with experimental FT-IR spectra. The theoretical vibrational frequencies and the assignments of the studied molecules were compared with experimental data. If the vibrational assignments are investigated individually, the

assignments obtained with related molecules are also consistent with the determined B3LYP/6-311+G (d,p) calculation, and there is good agreement between experimental and theoretical vibrational frequencies in the region of 4,000-235 cm⁻¹. In the monomeric and dimeric dimethyl substituted pyridine derivatives studied, C–H stretching and bending frequency shifts occurring between the dimer and the monomer may be diagnostic of the magnitude of the dimerization energy. The most stable dimeric form was obtained for the 3,4-dimethylpyridine molecule, as supported by the literature. It can be easily seen that the positions of the substitutents also affected the geometry and IR frequencies.

Acknowledgments Our thanks go to Eskisehir Osmangazi University Rectorate for the Gaussian03W program. This work was supported by the Research Fund of Eskişehir Osmangazi University. Project Number 200719025.

References

- Pongor G, Pulay P, Fogarasi G, Boggs JE (1984) J Am Chem Soc 106:2765. doi:10.1021/ja00322a006
- Stildham HD, Dilella DP (1979) J Raman Spectrosc 8:180. doi:10.1002/jrs.1250080314
- Stildham HD, Dilella DP (1980) J Raman Spectrosc 9:247. doi:10.1002/jrs.1250090408
- Dilella DP (1980) J Raman Spectrosc 9:239. doi:10.1002/ jrs.1250090407

- 5. Zerbi G, Crawford B, Overend J (1963) J Chem Phys 38:127. doi:10.1063/1.1733450
- Wilberg KB, Walters VA, Wong KN, Colson SD (1984) J Phys Chem 88:6067. doi:10.1021/j150668a067
- 7. Long DA, George WO (1963) Spectrochim Acta [A] 19:777
- 8. Green JHS, Kynaston W, Paisley HM (1963) Spectrochim Acta [A] 19:549
- Gandolfo D, Zarembowitch J (1977) Spectrochim Acta [A] 33:615. doi:10.1016/0584-8539(77)80136-0
- Spinner E (1963) J Chem Soc 1963:3860. doi:10.1039/ jr9630003860
- Pfeffer M, Braunstein P, Dehand J (1973) Spectrochim Acta A 30:331. doi:10.1016/0584-8539(74)80073-5
- Draeger JA (1983) Spectrochim Acta [A] 39:809. doi:10.1016/ 0584-8539(83)80022-1
- 13. Arenas JF, Lopez TI, Otero JC, Marcos JI (1997) J Mol Struct 443:410
- 14. Kovacs A (1999) J Mol Struct 397:482
- Fan K, Boggs JE (1986) Tetrahedron 42:1265. doi:10.1016/ S0040-4020(01)87345-2
- Bond AD, Davies JE (2001) Acta Cryst E 57:1087. doi:10.1107/ S1600536801017536
- Arenas JF, Lopez TI, Otero JC, Marcos JI (1999) J Mol Struct 476:139. doi:10.1016/S0022-2860(98)00541-9
- Pulay P, Fogarase G, Boggs JE (1981) J Chem Phys 74:3999. doi:10.1063/1.441580
- Green JH, Harrison DJ, Kynaston W, Paisley HM (1970) Spectrochim Acta A Mol Biomol Spectrosc 26:2139. doi:10.1016/0584-8539(70)80154-4
- 20. Coulsen E, Cox JD, Herington EFG, Martin JF (1959) J Chem Soc 1934. doi:10.1039/jr9590001934
- Handy NC, Maslen PE, Amos RD, Andrews JS, Murray CW, Laming GJ (1992) Chem Phys Lett 197:506. doi:10.1016/0009-2614(92)85808-N
- Handy NC, Murray CW, Amos RD (1993) J Phys Chem 97:4392. doi:10.1021/j100119a023
- Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623. doi:10.1021/j100096a001
- Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1995) J Phys Chem 99:16883. doi:10.1021/j100046a014
- 25. Lee SY, Boo BH (1996) Bull Korean Chem Soc 17:754
- 26. Lee SY, Boo BH (1996) Bull Korean Chem Soc 17:760
- 27. Rauhut G, Pulay P (1995) J Phys Chem 99:3093. doi:10.1021/j100010a019
- Osmialowski B, Kolehmainen E, Gawinecki R (2001) Magn Reson Chem 39:334. doi:10.1002/mrc.856
- Marek R, Brus J, Tousek J, Kovacs L, Ilockova D (2002) Magn Reson Chem 40:353. doi:10.1002/mrc.1020
- Meng Z, Carper WR (2002) J Mol Struct Theochem 588:45. doi:10.1016/S0166-1280(02)00116-1
- Laihia K, Kolehmainen E, Kauppinen R, Lorenc J, Puszko A (2002) Spectrochim Acta [A] 58:1425. doi:10.1016/S1386-1425(01)00583-2
- Depature L, Surpateanu G (2003) Spectrochim Acta [A] 59:3029. doi:10.1016/S1386-1425(03)00117-3

- Dega-Szafran Z, Katrusiak A, Szafran M (2006) Mol Struct 785:160. doi:10.1016/j.molstruc.2005.08.035
- 34. Smith WB (1999) Magn Reson Chem 37:103. doi:10.1002/(SICI) 1097-458X(199902)37:2<103::AID-MRC426>3.0.CO;2-U
- 35. Smith WB (1999) Magn Reson Chem 37:197
- Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/ PhysRevB.37.785
- 37. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913
- Pongor G, Pulay P, Fogarasi G, Boggs JE (1984) J Am Chem Soc 106:2765
- Dilella DP, Stidham HD (1980) J Raman Spectrosc 9:90–106. doi:10.1002/jrs.1250090207
- Vansanyi G (1969) Vibrational spectra of Benzene derivatives. Academic, New York
- Arenas JF, Lopez TI, Otero JC, Marcos JI (1995) J Phys Chem 99:11392. doi:10.1021/j100029a015
- Arenas JF, Lopez TI, Otero JC, Marcos JI (1996) J Phys Chem 100:3199
- Oğretir C, Tokay N (2003) J Mol Struct Theochem 626:113. doi:10.1016/S0166-1280(03)00080-0
- 44. Oğretir C, Tokay N (2003) J Mol Struct Theochem 629:51. doi:10.1016/S0166-1280(03)00085-X
- 45. Büyükmurat Y, Akyüz S (2001) J Mol Struct 545:563
- 46. Awad MK, Habeeb MM (1996) J Mol Struct 378:103. doi:10.1016/0022-2860(95)09127-0
- 47. Frish A, Trucks GW, Gaussian Users manual, Gaussian INC 2000
- 48. Frisch MJ, Trucks GW, Schlegel IIB, Scuseria GE, Robb MA JR Cheeseman JA, Jr.Mortgomery Vreven T, Kudin KN, Burant JC, Milliam JM, Iyengar, SS, Tomasi J, Barone V, Mennuci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada H, Ehara, M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomeli P, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Danneberg JJ, Zarkzewski VG, Dappich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Ragvachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stenow BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) Gaussian 03W, revision D.01, version 6.1, Gaussian, Pittsburgh PA
- Bond AD, Davies JE (2002) Acta Cryst E 58:328. doi:10.1107/ S1600536802003379
- Bond AD, Davies JE (2002) Acta Cryst E 58:961. doi:10.1107/ S1600536802013648
- 51. Bond AD, Parson S (2002) Acta Cryst E 58:550. doi:10.1107/ S160053680200692X
- Bond AD, Davies JE, Kirby AJ (2001) Acta Cryst E 57:1242. doi:10.1107/S1600536801019869
- 53. Bond AD, Davies JE (2002) Acta Cryst E 58:5. doi:10.1107/ S1600536801020426